If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+24x=16
We move all terms to the left:
x^2+24x-(16)=0
a = 1; b = 24; c = -16;
Δ = b2-4ac
Δ = 242-4·1·(-16)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{10}}{2*1}=\frac{-24-8\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{10}}{2*1}=\frac{-24+8\sqrt{10}}{2} $
| f-18=27 | | 19+15q=20q-16 | | 8g2–3g–5=0 | | 1/3(2x-1)=-1/7-4/7 | | -4=u/9 | | 5(3+s)=4(3s-1)-9 | | 8-2b-11=21+9b | | Y=0.29x+10Y=0x+0.35 | | 8x+7/10=1/5+6x | | 180-x=42+x | | 6-n=5n | | 1.8w+17.14+0.1w=11.59+0.4w | | 2x(x+5)=48 | | 3(3t+2)-10=-3 | | 2t^2–31t–16=0 | | 180-x=42=x | | 12b+18-2b=8b+4 | | X²-10x-20=0 | | 2t2–31t–16=0 | | Y=25x+250Y=0x+50 | | b+-40=-76 | | -13h=18-19h | | 2x-31=24-9x | | 4(2t+2)-2=3 | | -14j+16-8j=-20j-20 | | -3=z-10 | | 3z2–28z+9=0 | | 4-5z=-8z-10+5z | | 6y2+43y+7=0 | | -17d+12=1-16d | | (1/4)m=(9/4) | | 4x/2+3/2=2x |